The Future of Drone Delivery Systems

Blockchain and IoT can solve the current and future problems of the drone delivery industry through secured ownership, access control, data logging and peer-to-peer deliveries.

As an Amazon Prime member, I enjoy the benefits of ordering health supplements online. Competitive prices, better quality, and fast delivery are amongst those benefits. A good quality probiotics can cost $65-$90 per bottle. However, delivery time and transit conditions (i.e. temperature and humidity) have to be perfect to yield a successful delivery and keep the living organisms viable.

Most health supplement companies don’t even bother packaging probiotics with dry ice. Most send them using USPS First class mail that takes 3-5 business days, and a few use 2-day delivery with dry ice. Even then, the package is received with the ice melted and the viability of the therapeutic bacteria is in question.

There must be a better way!   In 2015, Amazon teased a “Prime Air” drone delivery system that would allow packages to be delivered to houses within thirty minutes, and I thought to myself how nice it would be to receive my probiotics on the same day in the optimum temperature.

Amazon’s Prime Air deliveries aren’t happening as promised, but Amazon appears to be fully committed to pursuing them.

Now, other companies, including Google and Walgreens, are working to implement drone deliveries. Project Wing, a GoogleX project, is an autonomous delivery drone service set to start a trial delivering merchandise from participating Walgreens to houses within six miles.   Project Wing opens up a plethora of opportunities, from delivering medical prescriptions to emergency equipment, such as heart defibrillators. Project Wing not only makes shopping more convenient, but it could also potentially save lives.

Drone Delivery System Challenges and Blockchain to the Rescue

Last year, the FAA predicted that 452,000 commercial drones would be in use by 2022, but now it expects the industry to hit that size around the beginning of next year. The FAA predicts the commercial drone market will triple over the next five years, hitting 835,000 aircraft by 2023.   Commercial drones, which are used for research, pilot training, filming, building inspection and a slew of other professional activities, are typically more expensive and robust than the model aircraft used by hobbyists, but recreational drones are far more numerous, according to the FAA. Today, officials estimate there are roughly 1.25 million amateur drones in use across the country, and they expect the market to grow to 1.4 million by 2023.

With gargantuan companies like Google and Amazon working on launching delivery drone projects for public use, the sky may be filled with thousands of drones milling about sooner than we think. With thousands of drones in the sky, there will be both opportunities and challenges to take into consideration.   Without proper auditing, tracking and security, drone technology could create more harm than good.

Currently, each drone manufacturer controls each of its drones via their own proprietary protocols – they’re unable to communicate with other drones efficiently and securely. For airspace regulations, this could become an issue with many drones flying at one time.   There’s also the chance of a drone’s backend architecture being compromised or having an outage due to its traditional, centralized nature. Drones also need to be able to communicate securely to one another, regardless of brand. Interoperability between devices is a must for the future of IoT – drones included, as they’re essentially unmanned, flying computers.

Malicious actors may also try to take advantage of drones through hacking and malware. Drones need to be secure and deemed safe from the perspective of the public eye as well, as it would not bode well for delivery drones to be considered a threat.

In delivery, there are multiple stakeholders who demand some level of information transparency to protect their interests, namely the sender, recipient, regulatory agencies, and insurance companies.   Using blockchain technology, we can alleviate many of the pain points for drone delivery, and provide solutions for the aforementioned problems and also bring out the true meaning of IoT through a fully distributed, resistive and fault-tolerant solution. A multipurpose, miniature and blockchain-enabled IoT device will be responsible for facilitating all drone to blockchain interactions.  This IoT device communicates directly to the blockchain without intermediary servers to ensure full security.

Drones are also increasingly being used for other commercial applications; however, this article will specifically focus on delivery, as it raises many questions with the publicly flying, potentially exploitable devices.

Why Blockchain?

Blockchain combines many aspects of a good, backend solution: decentralization, redundancy, fault tolerance, security, and scalability. Besides being architecturally sound, blockchain acts as a verifier of all information that’s sent to it. Through unique cryptographic keys, this allows digital identities, signatures, and ownership to be easily verified and recorded in a ledger-like format. Sensor, analytical and trip data from drones can also be signed and recorded immutably on the blockchain, leaving a permanent trail of audibility behind.

The Catapult blockchain architecture at a glance. (source: https//nem.io/catapult)

Why NEM’s Catapult blockchain?

The Catapult blockchain, in particular, has many built-in features, such as multi-signature access, metadata, atomic smart contracts and special “rules” (Restrictions) that you can assign to accounts on-chain. Catapult can also be used via a standard REST API interface, meaning no mining or staking is required for IoT devices.   Catapult is a very practical choice of a blockchain that already adapts to industry standards. These features will come to be very useful in defining ownership, access control and peer-to-peer smart contracts, and will allow for drones to experience true and fully secure autonomous functionality without sacrificing its computing resources.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *